安徽省重点新闻门户网站 安徽青年报官方网站 安徽省青年新闻工作者协会官方网站
当前位置:安青网>时政要闻 >正文

科普作家硬核科普!终极能源“人造太阳”到底是什么?

2019-04-25 01:01:38   来源:国资小新

科普作家硬核科普!终极能源“人造太阳”到底是什么?

 

“如果将来有一盏灯会被聚变能点亮,相信这盏灯一定、也必须是在中国!

 

 

4月22日,#科幻作家走进新国企#第二站来到中核集团。在核工业西南物理研究院,中国“人造太阳”装置首次对科幻、科普作家开放。据介绍,这个装置的最大意义在于提供核聚变研究平台,助力开发人类的终极能源。为什么这么说?一起听听科普作家的介绍。

 

 

 

属于宇宙和未来的能源

 

能源是可以为人类生产或生活提供所需的光、热、动力等任一形式能量的资源。作为人类最伟大的发明之一和未来最理想的能源,核能在世界能源体系中扮演着越来越重要的角色。

 

什么是核聚变?

 

核聚变,顾名思义,是利用原子核聚变反应产生能量。人类最早发现的核聚变反应是太阳内的核反应,它不断地向外辐射能量,向地球输送能源。因此,核聚变也被看作是宇宙的能源。它的好处也是显而易见,比如安全性高,废料处理成本低,原料容易获得等等。

 

核聚变的燃料,氢的同位素氘在海水中储量极为丰富,从一升海水中提出的氘,在完全的聚变反应中可释放相当于燃烧300升汽油的能量。核聚变反应堆不会产生污染环境的硫、氮氧化物,更不会释放温室效应气体,而且核聚变反应堆具有绝对的安全性。可以说它是一种无污染,无核废料,资源近乎无限的理想能源。受控核聚变发电的实现将从根本上解决人类的能源问题

 

 

 

这话说起来容易,实践起来谈何容易,太阳是一颗中等质量的恒星,质量相当于地球的N倍,其内部可以达到1500万度的高温和N个大气压的高压,所以能够产生可持续的核反应。而氢弹,其爆炸机理干脆就是用原子弹当引信,利用原子弹核裂变反应产生的高温高压引发核原料产生聚变反应。

 

 

 

受控核聚变反可用惯性约束或者磁约束的方式使之发生可控的、安全的核聚变反应,从中获得的热量可以转化为机械能,进而转化为电能,以替代目前广为使用的化石能源。

 

 

五十年的魔咒?

 

由于受控核聚变装置的基本物理原理与太阳内部核反应的机理相仿,所以这种装置被形象地称为“人造太阳”。

 

作为一个科技爱好者,我听说过“受控核聚变发电,永远的50年后”的魔咒。这个魔咒说的是,自20世纪50年代受控核聚变原理提出以来,每逢有媒体问到相关专家何时才能实现发电时,专家总说50年后,一个10年又一个10年过去了,直到20世纪末答案仍是这样。

 

为何会出现受控核聚变发电“永远的五十年后”魔咒?如何打破这个魔咒?

 

带着这个问题,我请教了该研究院的院长刘永。他诚恳地说:

 

的确有这个问题,受控核聚变太难了

 

现在各国已经联合起来进行技术突破。2007年ITER组织成立。国际热核聚变实验堆(ITER)是目前全球规模最大、影响最深远的国际科研合作项目之一,规模仅次于国际空间站的国际大科学工程计划。ITER将是世界上第一个聚变实验堆,是最终实现磁约束聚变能商业化必不可少的关键一步!

 

ITER是一个能产生大规模核聚变反应的超导托卡马克,体积接近天坛祈年殿的尺寸,高30米,直径28米,重达1万吨。它将用强磁场约束高温等离子体,最终实现核聚变能量的稳定可控释放,预计在本世界中叶实现核聚变能发电,从而造福人类。

 

中国作为理事会“七方”成员之一,与欧盟、印度、日本、韩国、俄罗斯和美国共同资助这一项目,承担项目工程建设阶段18个采购包的制造任务。

 

中国承担的18个采购包,包括了磁体支撑、校正场线圈系统、磁体馈线系统、气体注入系统、诊断系统等重要组成部分。按计划,该项目所需的所有大型部件将于2021年到位。ITER总干事认为中国交付相关产品“按时保质”,堪称合作各方的榜样。

 

▲刘永院长讲解核聚变知识

 

刘永院长介绍说,研究过程中会遇到许多预想不到的困难,充满不确定性,但挑战与机遇并存。在遇到预想不到的困难的同时,往往也会出现预想不到的发现与进展,这也是研究的乐趣所在,现在看来经过全世界几代研究者的不懈努力,看到受控核聚变发电的前景,

 

不会再用50年了,也许再用30年就可以实现了。

 

啥是托卡马克?

 

从20世纪40年代末开始,世界各科技强国就开发了多种方式,研究核聚变等离子体的约束方法。在这个过程中,人们对实现可控核聚变难度的认识也逐步加深,1954年,苏联库尔恰托夫原子能研究所发明了具有轴对称磁场位形的托卡马克 (Tokamak)装置。

 

 

托卡马克是指环形磁约束受控核聚变实验装置,所以中文又称环流器,它是由一个环形封闭磁场组成的磁笼子,高温高压的等离子体就被约束在这个磁场构成的无形笼子里,这个磁笼的外形很像一个中空的救生圈,等离子体环中能产生一个很大的环电流。

 

从20世纪70年代开始,托卡马克这种途径逐渐显出其独特的优越性,并在80年代,成为受控核聚变研究的主流途径。经过近半个世纪的努力,托卡马克已经显示出光明的前景,等离子体约束获得明显效果,温度达到上亿度。而产生核聚变能量的科学可行性已经被证实了,但是相关的成果都是以短脉冲的形式产生的,与实际反应堆连续运行还有很大的距离,而且核聚变反应能否实现氚自持仍然需要实验验证,如果氚自持的难题一旦被攻克,那么我们离商业发电又进了一大步。

 

 

我问刘永的第二个问题是,托卡马克研究进展这么慢,原因在于有可能它并不是最优的受控核聚变装置构型,也许现在各国都对托卡马克产生了技术的路径依赖,而真正适合受控核聚变的技术构型人类还没有探索出来。

 

对此,刘永回答说,的确有这种可能,而且包括中国在内的研究核聚变的主要国家也的确都在分出一部分精力在研究其他构型的核聚变装置。目前仅次于托卡马克的装置叫做仿星器。德国就用一半的核聚变研究经费来研究仿星器构型,这是一种备选的技术方案。不过国际学术界公认的是,虽然托卡马克进展没有那么快,但仍是目前最有希望成功的可控核聚变装置

 

 

追日的夸父——中核人

 

我国于上世纪90年代制定了“热堆-快堆-聚变堆”三步走的核能发展战略。《国家中长期科学和技术发展规划纲要(2006-2020年)》,将磁约束核聚变列为先进能源技术。《“十三五”国家科技创新规划》,将“磁约束核聚变能发展”列入了战略性前瞻性重大科学问题。

 

我国核聚变研究始于50年代,开始是原理性和探索性研究。中核集团核工业西南物理研究院于1965年在四川建立,是我国最早的聚变研究专业院所。核西物院作为我国参与ITER计划的主要技术支撑和研制任务主要承担单位之一,承担了我国ITER采购包任务中绝大部分涉核部件的研发与加工制造任务。

 

    责任编辑:刘鸣

    今日古诗词
    免责声明: 网站内所有新闻页面未标有来源:“安青网-安徽青年报”或“安青网”LOGO、水印的文字、图片、音频视频等稿件均为转载稿。如转载稿涉及版权等问题,请与安青网联系。转载稿件仅为传递更多信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实其内容的真实性。